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Abstract—In an effort to develop an efficient synthetic method of highly diastereoselective (2 0R)- and (2 0S)-2 0-deoxy[2 0-2H]guano-
sines, chemoenzymatic conversion was investigated. The synthesis of (2 0R > 98% de)-2 0-deoxy[2 0-2H]guanosine was achieved by bio-
logical transdeoxyribosylation using (2 0R > 98% de)-2 0-deoxy[2 0-2H]uridine, 2,6-diaminopurine, and Enterobacter aerogenes
AJ-11125, followed by treatment with adenosine deaminase. (2 0S > 98% de)-2 0-Deoxy[2 0-2H]guanosine was synthesized from
(2 0S > 98% de)-2 0-deoxy[2 0-2H]uridine and 2,6-diaminopurine using thymidine phosphorylase and purine nucleoside phosphorylase
instead of E. aerogenes AJ-11125.
� 2006 Elsevier Ltd. All rights reserved.
Structural studies concerning biologically functional
DNA or RNA are important for delineating mecha-
nisms related to the interaction of genes with proteins
or drugs. The ready availability of (2 0R)- and/or (2 0S)-
2 0-deoxy[2 0-2H]ribonucleosides with high diastereoselec-
tivity is extremely important in studies concerning the
conformational analysis of sugar moieties in DNA by
nuclear magnetic resonance (NMR) spectroscopy.1 Syn-
thetic methods leading to the production of (2 0R)- and/
or (2 0S)-2 0-deoxy[2 0-2H]ribonucleosides have been
reported. The chemical synthesis of (2 0R)- and (2 0S)-2 0-
deoxy[2 0-2H]cytidines from a glycal was reported by
Fraser-Reid and co-workers.2 Robins and co-workers
reported the synthesis of (2 0R)-2 0-deoxy[2 0-2H]adenosine
and -uridine by the reductive deuteration of adenosine
and uridine derivatives functionalized with either
2 0-chloro3 or 2 0-O-phenoxythiocarbonyl (O-PTC)4 with
Bu3Sn2H/AIBN, which resulted in lower stereoselectiv-
ity (2 0R = 76% de at the highest ratio). The synthesis
of highly diastereoselective (2 0R)- and (2 0S)-2 0-deoxy-
[2 0-2H]ribonucleosides was accomplished by Chatto-
padhyaya and co-workers.5 Although this represented
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the first report concerning the synthesis of (2 0R)- and
(2 0S)-2 0-deoxy[2 0-2H]guanosine derivatives, it leaves
much to be desired, in terms of synthesis efficiency.5

We developed a novel and efficient method for the
highly diastereoselective synthesis of (2 0R)- and (2 0S)-
2 0-deoxy[2 0-2H]nucleosides. Optimal conditions for
the synthesis of (2 0R > 98% de)-2 0-deoxy[2 0-2H]uridine,
-adenosine, and -thymidine were found using the
Bu3Sn2H–Et3B system, with a bromo group at the 2 0

position as the leaving group, a 1,1,3,3-tetra-
isopropyldisiloxane-1,3-diyl (TIPDS) group for the
protection of the hydroxyl groups at the 3 0 and 5 0 posi-
tions of nucleosides as the deuteration substrate, and a
reaction temperature of �78 �C.6 (2 0S > 98% de)-2 0-
deoxy[2 0-2H]nucleosides were synthesized by applica-
tion of this method to [2 0-2H]arabinonucleosides
prepared by reductive deuteration of 2 0-ketonucleosides
with NaB2H4.7 These highly diastereoselective deuter-
ated compounds were used to investigate intrastrand
C2 0 hydrogen abstraction induced by photoirradiation
of 5-halouracil-containing oligonucleotides using a ste-
reoselective C20-deuterated deoxyadenosine,8 and for the
investigation of the sugar conformation of DNA deca-
mers using a stereoselective (2 0R)- or (2 0S)-deuterium-
labeled DNA by proton–proton J coupling constants.1

The aforementioned synthetic methods, however, are
not entirely satisfactory in terms of diastereoselectivity
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Table 1.

Entry Substrate Reagent Temp (�C) % de

1 3 Bu3Sn2H–AIBN 65 52
2 3 Bu3Sn2H–AIBN + )))a 12 64
3 3 Bu3Sn2H–AIBN + )))a �60 —b

4 4 Bu3Sn2H–Et3B �3 56
5 4 Bu3Sn2H–Et3B �25 67
6 4 Bu3Sn2H–Et3B �55 67
7 4 Bu3Sn2H–Et3B �65 72
8 4 Bu3Sn2H–Et3B �78 82
9 4 (Me3Si)3Si2H–Et3B �10 —c

a ))): Ultrasound irradiation.
b No reaction.
c Non-labeled 7 is included as 59%.
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and the overall yield of (2 0R)- and (2 0S)-2 0-deoxy-
[2 0-2H]guanosines.

We then investigated the development of an efficient and
highly diastereoselective synthesis of (2 0R)- and (2 0S)-2 0-
deoxy[2 0-2H]guanosines by chemoenzymatic conversion
of (2 0R > 98% de)- and (2 0S > 98% de)-2 0-deoxy[2 0-2H]-
uridine, respectively. This letter reports a chemoenzy-
matic synthesis of (2 0R > 98% de)-2 0-deoxy[2 0-2H]-
guanosine (1) and (2 0S > 98% de)-2 0-deoxy[2 0-2H]guano-
sine (2).

We studied the effect of leaving groups (O-PTC, Br) at
the 2 0 position and protecting groups (Bz, TIPDS) at
the 3 0 and 5 0 hydroxyl groups of the guanosine deriva-
tive, radical initiators (AIBN, AIBN and ultrasound
irradiation, Et3B), reaction temperature, and deutera-
tion reagents [Bu3Sn2H, (Me3Si)3Si2H] on diastereo-
selectivity (Scheme 1). The results are shown in Table 1.
The deuteration of 3 0,5 0-di-O-Bz-N2-isobutyryl-2 0-O-
PTC-guanosine (3) using the Bu3Sn2H–AIBN system
yielded 52% de at 65 �C, 64% de under high-intensity
ultrasound irradiation at 12 �C, but the reaction did
not proceed at �60 �C (entries 1–3 in Table 1). Although
the Bu3Sn2H–Et3B system was employed for 2 0-bromo-
2 0-deoxy-N2-isobutyryl-3 0,5 0-O-TIPDS-guanosine (4), it
could not yield highly diastereoselective (2 0R)-2 0-
deoxy[2 0-2H]guanosine derivative (2 0R-6) even at
�78 �C, which in the case of (2 0R > 98% de)-2 0-deoxy-
adenosine, -thymidine, and -2 0-deoxyuridine provided
excellent diastereoselectivity (Scheme 1, entries 4–8 in
Table 1, Fig. 1).

Reductive deuteration using the (Me3Si)3Si2H–Et3B sys-
tem in 2,2,5,5-tetramethyltetrahydrofuran (tetramethyl-
THF) was then attempted. Application of this system
to 2 0-bromo-2 0-deoxy-3 0,5 0-O-TIPDS-uridine (8) gave
(2 0R > 98% de)-2 0-deoxy-3 0,5 0-O-TIPDS-[2 0-2H]uridine
(9) in 89% yield at 0 �C and 87% yield at room temper-
ature.9 Therefore, it might be expected that the reductive
deuteration reaction using the (Me3Si)3Si2H–Et3B sys-
tem might involve a steric effect, yielding higher diaste-
reoselectivity in comparison with reactions utilizing the
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Scheme 1. Chemical synthesis of 1.
Bu3Sn2H–Et3B system. Based on this expectation, the
reductive deuteration of 4 using the (Me3Si)3Si2H–
Et3B system was performed. Contrary to expectations,
a non-deuterated 2 0-deoxyguanosine derivative 7 having
a hydrogen atom at the 2 0 position resulted in 59% yield,
in addition to (2 0R)-6, even at �10 �C (Scheme 1, entry 9
in Table 1, Fig. 1). This was rationalized as follows. The
ethyl radical generated in the first stage abstracted the
deuterium of (Me3Si)3Si2H to give the tris(trimethylsi-
lyl)silyl (TTMSS) radical, and then the TTMSS radical
generated abstracted Br from 4 in the targeted reaction
cycle (solid line in Scheme 2). In this step, by competing
with Br of 4, the hydrogen of 4 and/or solvent
was drawn out by the TTMSS radical to give rise to
(Me3Si)3SiH (broken line), because of the steric hin-
drance of (Me3Si)3Si2H and the larger isobutyrylguanine
base compared with other nucleobases (Scheme 2).

In an effort to overcome the aforementioned drawback,
a chemoenzymatic synthetic study of (2 0R > 98% de)-2 0-
deoxy[2 0-2H]guanosine (1) from (2 0R > 98% de)-2 0-
deoxy[2 0-2H]uridine (10) was undertaken.

Previously, the synthesis of 9-b-DD-arabinosyladenine by
a transglycosylation reaction between adenine and 1-b-
DD-arabinofuranosyluracil was reported by Utagawa
and co-workers.10 Later, Yokozeki and co-workers syn-
thesized 2 0-deoxyadenosine and 2 0-deoxyguanosine by
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Figure 1. The sugar moiety H2 0pro-R and H2 0pro-S region 1H NMR
spectral data of the 3 0,5 0-di-O-acetyl-2 0-deoxy[2 0-2H]guanosine perpe-
trated are showed. Spectra of a–c were (2 0R)-derivatives. The spectrum
a obtained by the reaction conducted with the Bu3Sn2H–Et3B system,
b: with the (Me3Si)3Si2H–Et3B system, c: by a transglycosylation, the
spectrum d was (2 0S)-3 0,5 0-di-O-acetyl-2 0-deoxy[2 0-2H]guanosine by the
preparation of transdeoxyribosylation, and the spectrum e was non-
labeled 3 0,5 0-di-O-acetyl-2 0-deoxyguanosine. The spectra were
recorded with a Bruker DPX 400 spectrometer. Chemical shifts were
recorded in the d scale relative to an internal reference of CH3OH
(3.35 ppm).
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application of this strategy.11 We investigated the syn-
thesis of 1 from 10 by this method. The reaction solution
of a total volume of 20 mL of 50 mM potassium phos-
phate buffer (KPB) (pH 7.0) contained 100 mM 10,
150 mM 2,6-diaminopurine (11), and 250 mg of wet cells
of Enterobacter aerogenes AJ-11125 (Ajinomoto culture
collection) prepared according to Yokozeki.11 The reac-
tion solution was incubated at 60 �C with shaking for
1 h and the reaction was stopped by boiling the solution
to give {(2R)-2-deoxy[2-2H]ribosyl}-2,6-diaminopurine
(12).

This reaction product 12 was then converted to 1 by
adenosine deaminase. After protection of the hydroxyl
groups at the 3 0 and 5 0 positions of 1 with the acetyl
groups, 3 0,5 0-di-O-Ac-2 0-deoxy[2 0-2H]guanosine was ob-
tained by silica gel column chromatography in 43%
overall yield from 10 and >98% de, which is the same
as that of 10 (Scheme 3). The sugar moiety H2 0pro-R
and H2 0pro-S region 1H NMR spectral data of the
labeled products are shown in Figure 1, together
with non-labeled 3 0,5 0-di-O-acetyl-2 0-deoxyguanosine
for comparison. The spectrum a obtained by the reac-
tion conducted with the Bu3Sn2H–Et3B system shows
the ratio 2 0R:2 0S = 91:9 (82% de), the spectrum b by
the (Me3Si)3Si2H–Et3B system shows non-deuterated 7
in 59% yield in addition to (2 0R)-6. The spectrum c
prepared by chemoenzymatic synthesis clearly shows
the absence of the 2 0pro-R proton (Fig. 1).

The synthesis of (2 0S > 98% de)-2 0-deoxy[2 0-2H]guano-
sine (2) was then investigated. Chemical conversion of
the uridine, adenosine, and ribosylthymine to the corre-
sponding (2 0S)-2 0-deoxy[2 0-2H]uridine, -adenosine, and
-thymidine was performed by a sequence of reactions
involving seven steps.7 Following reductive deuteration
of the intermediate 2 0-ketonucleosides with NaB2H4,
the resulting [2 0-2H]arabinonucleosides were converted
to 2 0-bromo-2 0-deoxy[2 0-2H]ribonucleosides via the 2 0-
O-Tf-derivatives. The highly diastereoselective reduction
of these compounds by the Bu3SnH–Et3B system, which
was established based on the synthesis of (2 0R > 98%
de)-2 0-deoxy[2 0-2H]nucleosides, yielded highly diastereo-
selective (2 0S)-2 0-deoxy[2 0-2H]nucleosides. In the case of
(2 0S)-2 0-deoxy[2 0-2H]guanosine, however, 93% de re-
sulted, with an overall yield of 31%. Both the % de
and overall yield of (2 0S)-2 0-deoxy[2 0-2H]guanosine were
unsatisfactory. Therefore, we studied the synthesis of 2
utilizing a chemoenzymatic approach. The first synthesis
of labeled nucleosides utilizing a transglycosylation
reaction using thymidine phosphorylase, purine nucleo-
side phosphorylase, and adenosine deaminase was
reported by Jones and co-workers12 by application
of the findings of Krenitsky and co-workers.13

2 0-Deoxy[7-15N]guanosine was synthesized by a trans-
glycosylation reaction between [7-15N]diaminopurine
and thymidine using thymidine phosphorylase and pur-
ine nucleoside phosphorylase, followed by deamination
with adenosine deaminase. Concerning the sugar moiety
of nucleosides, Ono and co-workers14 reported the
transdeoxyribosylation of 13C/2H doubly labeled 2 0-
deoxyadenosine, 2 0-deoxyguanosine, and 2 0-deoxyuri-
dine from 13C/2H doubly labeled thymidine based on
the report of Jones. We carried out the synthesis of 2
from (2 0S > 98% de)-2 0-deoxy[2 0-2H]uridine (13) utiliz-
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ing the method of Jones and co-workers.12 (2 0S > 98%
de)-13 as starting material was prepared from uridine
involving seven steps that included stereoselective reduc-
tive deuteration of the resulting 2 0-oxouridine derivative
with NaB2H4 in EtOH–H2O (2:1)7 and highly stereo-
selective (Me3Si)3SiH–Et3B reduction of the bromide.9

The transdeoxyribosylation of 13 and 11 in the presence
of thymidine phosphorylase and purine nucleoside phos-
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phorylase in KPB yielded {(2S)-2-deoxy[2-2H]ribosyl}-
2,6-diaminopurine, which was treated with adenine
deaminase to give 2. The yields were 69% and 41% at
40 �C and 25 �C, respectively (Scheme 4).

It seems that the difference in yield might be related to
the solubility of 11, which is low at 25 �C, the optimal
enzymatic temperature. At 40 �C, the reaction pro-
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ceeded better than at 25 �C due to the higher solubility
of 11, notwithstanding the fact that the enzyme is par-
tially inactivated at the higher temperature. Therefore,
a modified reaction was carried out by adding enzyme
on two separate occasions during the reaction time.
The yield of 2 was improved to 87% following purifica-
tion using an anion exchange resin. The diastereoselec-
tivity of (2 0S)-3 0,5 0-di-O-Ac-2 0-deoxy[2 0-2H]guanosine
acetylated 2 was >98% de (Fig. 1d).

In conclusion, an efficient synthesis of (2 0R > 98% de)-
2 0-deoxy[2 0-2H]guanosine was achieved by a biological
transdeoxyribosylation reaction between (2 0R > 98%
de)-2 0-deoxy[2 0-2H]uridine and 2,6-diaminopurine using
E. aerogenes AJ-11125, followed by treatment with
adenosine deaminase. (2 0S > 98% de)-2 0-Deoxy[2 0-2H]-
guanosine was efficiently synthesized using thymidine
phosphorylase and purine nucleoside phosphorylase
instead of E. aerogenes AJ-11125.
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